Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

2-Amino-1,3-benzothiazol-3-ium dihydrogen phosphate

Sabahat Zahra Siddiqui, ${ }^{\text {a }}$ Usama Waqas, ${ }^{a}$ Mehmet Akkurt, ${ }^{\text {b* }}$ Aziz-ur-Rehman ${ }^{\text {a }}$ and Islam Ullah Khan ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Chemistry, Government College University, Lahore 54000, Pakistan, and ${ }^{\mathbf{b}}$ Department of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey
Correspondence e-mail: akkurt@erciyes.edu.tr

Received 27 June 2010; accepted 29 June 2010

Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.038 ; w R$ factor $=0.096$; data-to-parameter ratio $=16.5$.

The cation of the title compound, $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{~S}^{+} \cdot \mathrm{H}_{2} \mathrm{PO}_{4}^{-}$, is almost planar (r.m.s deviation $=0.017 \AA$ for all non- H atoms). In the crystal structure, the cations and anions are connected by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, with $\pi-\pi$ stacking interactions between neighbouring 1,3-thiazole and benzene rings [centroid-centroid distance $=3.5711$ (11) Å], forming a three-dimensional network.

Related literature

For the structural parameters of some organic dihydrogenomonophosphates, see: Gholivand et al. (2007); Mrad et al. (2009). For the biological and pharmacological properties of heterocyclic compounds, see: Malik et al. (2010); Sinha \& Tiwari (1986). For the synthesis, see: Thomas et al. (2003).

Experimental

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{~S}^{+} \cdot \mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$
$V=1016.56(5) \AA^{3}$
$M_{r}=248.20$
Monoclinic, $P 2_{1} / c$
$a=12.3915$ (4) A
$b=10.1572(3) \AA$
$c=8.3159$ (2) A
$\beta=103.775$ (1) ${ }^{\circ}$

Data collection

Bruker APEXII CCD
2490 independent reflections diffractometer
9333 measured reflections 1938 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.033$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.096$
$S=1.03$
2490 reflections
151 parameters
5 restraints

H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}=0.31$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.26 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA \mathrm{A}^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 2^{\text {i }}$	0.873 (16)	1.800 (16)	2.6693 (18)	174 (3)
$\mathrm{N} 2-\mathrm{H} 6 \cdots{ }^{3}{ }^{\text {ii }}$	0.86 (2)	2.39 (2)	3.138 (2)	147 (2)
$\mathrm{N} 2-\mathrm{H} 6 \cdots \mathrm{O} 4^{\text {ii }}$	0.86 (2)	2.31 (2)	3.076 (2)	149.3 (19)
$\mathrm{N} 2-\mathrm{H} 7 \cdots 3^{\text {i }}$	0.862 (18)	2.018 (18)	2.875 (2)	172 (2)
$\mathrm{O} 1-\mathrm{H} 8 \cdots \mathrm{O} 2^{\text {iii }}$	0.809 (19)	1.795 (19)	2.6017 (18)	175 (3)
$\mathrm{O} 4-\mathrm{H} 9 \cdots \mathrm{O}^{\text {iv }}$	0.801 (17)	1.765 (17)	2.5654 (18)	178 (3)

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

The authors are grateful to the Higher Education Commission of Pakistan for financial support to purchase the diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5282).

References

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Gholivand, K., Zare, K., Afshar, F., Shariatinia, Z. \& Khavasi, H. R. (2007). Acta Cryst. E63, o4027.
Malik, J. K., Manvi, F. V., Nanjwede, B. K., Singh, S. \& Purohit, P. (2010). Pharm. Lett. 2, 347-359.
Mrad, M. L., Akriche, S., Rzaigui, M. \& Ben Nasr, C. (2009). Acta Cryst. E65, o757-o758.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sinha, A. I. P. \& Tiwari, S. P. (1986). Curr. Sci. 55, 386-390.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Thomas, L., Gupta, A. \& Gupta, V. (2003). J. Fluorine Chem. 22, 207-213.

supplementary materials

Acta Cryst. (2010). E66, o1929 [doi:10.1107/S1600536810025547]

2-Amino-1,3-benzothiazol-3-ium dihydrogen phosphate

S. Z. Siddiqui, U. Waqas, M. Akkurt, Aziz-ur-Rehman and I. U. Khan

Comment

In recent years analogues and derivatives of heterocyclic compounds have attracted strong interest due to their useful biological and pharmacological properties. The substituted benzothiazole derivatives have been reported to possess good antibacterial and antifungal activities. Several of its metal complexes have also displayed potent anti-neoplastic, anti-viral and anti-tumour activities (Malik et al., 2010; Sinha \& Tiwari, 1986). In the present paper, the structure of 2-amino-1,3-benzothiazol-3-ium dihydrogen phosphate has been determined as part of a research program involving the synthesis and biological evaluation of sulfur containing compounds.

In the cation of the title compound (I), (Fig. 1), the 1,3-benzothiazol-3-ium ring system ($\mathrm{S} 1 / \mathrm{N} 1 / \mathrm{C} 1-\mathrm{C} 7$) is almost planar (r.m.s deviation $=0.002 \AA$). In the anion, the bond lengths are $\mathrm{P} 1-\mathrm{O} 1=1.5531(16), \mathrm{P} 1-\mathrm{O} 4=1.5638(17), \mathrm{P} 1-\mathrm{O} 2=$ 1.5017 (12) and $\mathrm{P} 1 — \mathrm{O} 3=1.5024$ (14) \AA. These values are in full agreement with those found in such anions in other organic dihydrogenomonophosphates [Gholivand et al., 2007; Mrad et al., 2009]. The phosphorus atom has a slightly distorted tetrahedral coordination.

In the crystal structure, the cation and anion components are connected by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1, Fig. 2), with $\pi-\pi$ stacking interactions between neighbouring 1,3-thiazole and benzene rings $\left[C g 1 \cdots C g 2^{v}=3.5711\right.$ (11) \AA; symmetry code: (v) $x, 1 / 2-y, 1 / 2+z ; C g 1$ and $C g 2$ are the centroids of the S1/N1/C1/C6/C7 1,3-thiazole and $\mathrm{C} 1-\mathrm{C} 6$ benzene rings, repectively], forming a three-dimensional supramolecular network.

Experimental

The title compound was synthesized using the method of Thomas et al. (2003), but with few modifications as follows. 0.1 mole of aniline and 9 ml of concentrated hydrochloric acid were taken in a round bottom flask equipped with reflux condenser, as the insoluble white precipitates of aniline hydrochloride were formed, 25 ml of distilled water was added and the reactants were heated for 35 min . After cooling at room temperature 0.1 moles of sodium thiocyanate were added and the mixture was further refluxed and stirred for 5 h . The resulting mixture was then cooled at room temperature and off-white crystalline solid of phenylthiourea separated out.
0.07 moles of phenyl thiourea were dissolved in 70 ml chloroform in a three-necked round bottom flask equipped with reflux condenser, the whole apparatus was fitted in an ice bath. 0.07 M of bromine in 70 ml of chloroform was added drop wise in a period of 2 h in the reaction mixture. The temperature was maintained at 277 K . After the addition of bromine, the mixture was stirred at room temperature for 4 h and was further refluxed for about 3 h until the evolution of hydrogen bromide stopped. On moderate cooling solid separated out filtered and washed with sulfur dioxide water (10 ml conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ in 50 ml water). The filtrate was neutralized with aqueous ammonia (25%). Precipitates of 2-aminobenzothiazole separated out. Filtered and washed thoroughly with water and re-crystallized in ethanol.

supplementary materials

Then 0.001 moles of 2-aminobenzothiazole in 3 ml of methanol and $1-2$ drops of o-phosphoric acid were added in a round bottom flask. The reaction mixture was refluxed for $8-10 \mathrm{~h}$ with continuous stirring. On gradual cooling crystalline solid separated out. Filtered and washed the solid with water and recrystallized in methanol to yield the final product.

Refinement

Hydroxyl H atoms and H atoms on N atoms were located in a difference Fourier map and refined as riding in their as-found relative positions, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\mathrm{eq}}(\mathrm{O})$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{N})$. The distances $\mathrm{O}-\mathrm{H}$ and $\mathrm{N}-\mathrm{H}$ were restrained to 0.83 and $0.86 \AA$, respectively. H atoms bonded to C atoms were positioned geometrically and refined using a riding model, $\left[\mathrm{C}-\mathrm{H}=0.93 \AA\right.$ and $\left.U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})\right]$.

Figures

Fig. 1. A view of the title molecule. Displacement ellipsoids are drawn at the 50% probability level.

2-Amino-1,3-benzothiazol-3-ium dihydrogen phosphate

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{~S}^{+} \cdot \mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
$M_{r}=248.20$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=12.3915$ (4) \AA
$b=10.1572$ (3) \AA
$c=8.3159(2) \AA$
$\beta=103.775(1)^{\circ}$
$V=1016.56(5) \AA^{3}$
$Z=4$

$$
\begin{aligned}
& F(000)=512 \\
& D_{\mathrm{x}}=1.622 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 2983 \text { reflections } \\
& \theta=2.6-27.1^{\circ} \\
& \mu=0.47 \mathrm{~mm}^{-1} \\
& T=296 \mathrm{~K} \\
& \text { Rod, off-white } \\
& 0.25 \times 0.09 \times 0.07 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker APEXII CCD
diffractometer
Radiation source: sealed tube
graphite
φ and ω scans
9333 measured reflections
2490 independent reflections
1938 reflections with $I>2 \sigma(I)$

$$
R_{\mathrm{int}}=0.033
$$

$\theta_{\text {max }}=28.3^{\circ}, \theta_{\text {min }}=3.2^{\circ}$
$h=-13 \rightarrow 16$
$k=-8 \rightarrow 13$
$l=-11 \rightarrow 8$

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.096$
$S=1.03$
2490 reflections
151 parameters
5 restraints

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^{2} for ALL reflections except those flagged by the user for potential systematic errors. Weighted R factors $w R$ and all goodnesses of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The observed criterion of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
S1	$0.35481(4)$	$0.35955(5)$	$1.06135(6)$	$0.0400(2)$
N1	$0.28028(14)$	$0.13298(14)$	$0.95775(19)$	$0.0362(5)$
N2	$0.43880(16)$	$0.12254(17)$	$1.1731(2)$	$0.0460(6)$
C1	$0.23286(16)$	$0.35055(18)$	$0.9039(2)$	$0.0363(6)$
C2	$0.16650(19)$	$0.4518(2)$	$0.8240(3)$	$0.0494(7)$
C3	$0.07398(19)$	$0.4193(2)$	$0.7023(3)$	$0.0555(8)$
C4	$0.04759(19)$	$0.2898(2)$	$0.6589(3)$	$0.0525(7)$

C5	$0.11376(17)$	$0.1882(2)$	$0.7386(2)$	$0.0436(6)$
C6	$0.20561(15)$	$0.22026(17)$	$0.8625(2)$	$0.0340(6)$
C7	$0.36161(16)$	$0.18903(19)$	$1.0689(2)$	$0.0350(5)$
P1	$0.31052(4)$	$0.78446(4)$	$0.06814(5)$	$0.0321(2)$
O1	$0.21014(12)$	$0.72357(14)$	$0.12333(17)$	$0.0448(5)$
O2	$0.26558(12)$	$0.87196(11)$	$-0.07803(14)$	$0.0396(4)$
O3	$0.38850(12)$	$0.84982(13)$	$0.21213(15)$	$0.0441(4)$
O4	$0.37402(14)$	$0.66563(15)$	$0.01419(16)$	$0.0497(5)$
H1	$0.271(2)$	$0.0479(16)$	$0.948(3)$	0.0600^{*}
H2	0.18390	0.53930	0.85170	0.050^{*}
H3	0.02810	0.48600	0.64790	0.0670^{*}
H4	-0.01510	0.27070	0.57560	0.0630^{*}
H5	0.09680	0.10090	0.70950	0.0520^{*}
H6	$0.4904(18)$	$0.164(2)$	$1.242(3)$	0.0600^{*}
H7	$0.430(2)$	$0.0391(17)$	$1.184(3)$	0.0600^{*}
H8	$0.228(2)$	$0.690(3)$	$0.214(2)$	0.0750^{*}
H9	$0.379(2)$	$0.663(3)$	$-0.080(2)$	0.0750^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	$0.0424(3)$	$0.0331(3)$	$0.0412(3)$	$-0.0075(2)$	$0.0035(2)$	$-0.0034(2)$
N 1	$0.0421(9)$	$0.0296(8)$	$0.0326(8)$	$-0.0059(7)$	$0.0007(7)$	$0.0004(6)$
N 2	$0.0446(10)$	$0.0425(9)$	$0.0417(10)$	$-0.0074(8)$	$-0.0079(8)$	$0.0031(8)$
C1	$0.0357(10)$	$0.0384(10)$	$0.0352(9)$	$-0.0013(8)$	$0.0092(8)$	$-0.0010(8)$
C2	$0.0530(13)$	$0.0418(11)$	$0.0525(12)$	$0.0090(10)$	$0.0110(10)$	$0.0023(10)$
C3	$0.0512(13)$	$0.0605(14)$	$0.0515(13)$	$0.0172(11)$	$0.0055(10)$	$0.0062(11)$
C4	$0.0370(11)$	$0.0749(16)$	$0.0409(11)$	$0.0027(11)$	$0.0000(9)$	$0.0000(10)$
C5	$0.0400(11)$	$0.0500(11)$	$0.0383(10)$	$-0.0081(9)$	$0.0043(8)$	$-0.0034(9)$
C6	$0.0347(10)$	$0.0382(10)$	$0.0290(9)$	$-0.0026(8)$	$0.0074(7)$	$0.0013(7)$
C7	$0.0371(10)$	$0.0350(9)$	$0.0321(9)$	$-0.0055(8)$	$0.0068(8)$	$0.0006(7)$
P1	$0.0371(3)$	$0.0314(3)$	$0.0236(2)$	$0.0020(2)$	$-0.0009(2)$	$0.0029(2)$
O1	$0.0399(8)$	$0.0585(9)$	$0.0308(7)$	$-0.0073(7)$	$-0.0021(6)$	$0.0036(6)$
O2	$0.0562(9)$	$0.0307(6)$	$0.0256(6)$	$0.0059(6)$	$-0.0027(6)$	$0.0010(5)$
O3	$0.0462(8)$	$0.0503(8)$	$0.0292(7)$	$-0.0127(6)$	$-0.0038(6)$	$0.0042(6)$
O4	$0.0685(10)$	$0.0476(8)$	$0.0334(7)$	$0.0263(7)$	$0.0128(7)$	$0.0122(7)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{S} 1-\mathrm{C} 1$	$1.7504(19)$
$\mathrm{S} 1-\mathrm{C} 7$	$1.735(2)$
$\mathrm{P} 1-\mathrm{O} 3$	$1.5024(14)$
$\mathrm{P} 1-\mathrm{O} 1$	$1.5531(16)$
$\mathrm{P} 1-\mathrm{O} 2$	$1.5017(12)$
$\mathrm{P} 1-\mathrm{O} 4$	$1.5638(17)$
$\mathrm{O} 1-\mathrm{H} 8$	$0.809(19)$
$\mathrm{O} 4-\mathrm{H} 9$	$0.801(17)$
$\mathrm{N} 1-\mathrm{C} 6$	$1.386(2)$
$\mathrm{N} 1-\mathrm{C} 7$	$1.323(2)$

$\mathrm{N} 2-\mathrm{H} 7$	$0.862(18)$
$\mathrm{N} 2-\mathrm{H} 6$	$0.86(2)$
$\mathrm{C} 1-\mathrm{C} 6$	$1.389(3)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.384(3)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.377(3)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.382(3)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.385(3)$
$\mathrm{C} 5-\mathrm{C} 6$	$1.380(3)$
$\mathrm{C} 2-\mathrm{H} 2$	0.9300
$\mathrm{C} 3-\mathrm{H} 3$	0.9300

sup-4

supplementary materials

N2-C7	1.314 (3)	C4-H4	0.9300
N1-H1	0.873 (16)	C5-H5	0.9300
$\mathrm{S} 1 \cdots \mathrm{O} 4^{\mathrm{i}}$	3.1497 (16)	$\mathrm{C} 1 \cdots \mathrm{C} 7^{\mathrm{xi}}$	3.547 (3)
S1 \cdots N1	2.5519 (16)	$\mathrm{C} 1 \cdots \mathrm{C} 5^{\text {iii }}$	3.469 (3)
$\mathrm{S} 1 \cdots \mathrm{O} 3^{\mathrm{ii}}$	3.2897 (15)	$\mathrm{C} 4 \cdots \mathrm{C} 6^{\mathrm{xi}}$	3.496 (3)
S1 \cdots C $5^{\text {iii }}$	3.664 (2)	$\mathrm{C} 5 \cdots \mathrm{~S} 1^{\mathrm{xi}}$	3.664 (2)
S1 \cdots C $6{ }^{\text {iii }}$	3.5429 (18)	$\mathrm{C} 5 \cdots \mathrm{C} 1^{\mathrm{xi}}$	3.469 (3)
$\mathrm{P} 1 \cdots \mathrm{O} 2^{\text {iv }}$	3.5032 (13)	C6 \cdots C $4^{\text {iii }}$	3.496 (3)
P1 $\cdots{ }^{\text {H }}$	2.87 (2)	C6 \cdots C $7^{\text {xi }}$	3.577 (3)
P1 $\cdots{ }^{\text {d }}{ }^{\text {vi }}$	2.890 (16)	C6 \cdots S1 ${ }^{\text {xi }}$	3.5429 (18)
$\mathrm{P} 1 \cdots \mathrm{H} 9^{\text {iv }}$	2.896 (17)	C7 \cdots C $6^{\text {iii }}$	3.577 (3)
$\mathrm{P} 1 \cdots \mathrm{H} 1^{\text {vii }}$	2.857 (17)	C7 \cdots C $1^{\text {iii }}$	3.547 (3)
P1 $\cdots 7^{\text {vii }}$	3.02 (2)	C3 $\cdots{ }^{\text {a }}$ xii	3.0400
$\mathrm{O} 1 \cdots \mathrm{O} 2{ }^{\text {iv }}$	2.6017 (18)	$\mathrm{C} 3 \cdots \mathrm{H} 5^{\text {xiii }}$	3.0300
$\mathrm{O} 2 \cdots \mathrm{~N} 1^{\text {vii }}$	2.6693 (18)	$\mathrm{C} 5 \cdots \mathrm{H} 3^{\text {xiv }}$	3.0000
$\mathrm{O} 2 \cdots \mathrm{P} 1^{\mathrm{vi}}$	3.5032 (13)	$\mathrm{H} 1 \cdots \mathrm{P} 1^{\mathrm{x}}$	2.857 (17)
$\mathrm{O} 2 \cdots \mathrm{O} 1^{\text {vi }}$	2.6017 (18)	$\mathrm{H} 1 \cdots \mathrm{O} 2^{\mathrm{x}}$	1.800 (16)
$\mathrm{O} 3 \cdots \mathrm{~N} 2^{\text {vii }}$	2.875 (2)	H1 $\cdots{ }^{\text {H }}$	2.43 (3)
O3 \cdots S1 ${ }^{\text {v }}$	3.2897 (15)	$\mathrm{H} 2 \cdots \mathrm{O} 4^{\text {i }}$	2.7400
$\mathrm{O} 3 \cdots \mathrm{~N} 2^{\text {v }}$	3.138 (2)	$\mathrm{H} 2 \cdots \mathrm{O} 1^{1}$	2.8900
$\mathrm{O} 3 \cdots \mathrm{O} 4^{\text {iv }}$	2.5654 (18)	H3 $\cdots 5^{\text {xiii }}$	3.0000
O4 \cdots S1 ${ }^{\text {viii }}$	3.1497 (16)	H3 $\cdots 3^{\text {xii }}$	2.4100
$\mathrm{O} 4 \cdots \mathrm{O} 3^{\mathrm{vi}}$	2.5654 (18)	H3 \cdots H5 ${ }^{\text {xiii }}$	2.4600
$\mathrm{O} 4 \cdots \mathrm{~N} 2^{\text {v }}$	3.076 (2)	H3 \cdots C $3^{\text {xii }}$	3.0400
$\mathrm{O} 1 \cdots \mathrm{H} 4^{\text {ix }}$	2.6300	$\mathrm{H} 4 \cdots \mathrm{O} 1^{\mathrm{xv}}$	2.6300
$\mathrm{O} 1 \cdots \mathrm{H} 2^{\text {viii }}$	2.8900	H5 $\cdots{ }^{\text {H }}{ }^{\text {xiv }}$	2.4600
$\mathrm{O} 2 \cdots \mathrm{H} 8^{\text {vi }}$	1.795 (18)	$\mathrm{H} 5 \cdots \mathrm{C} 3^{\text {xiv }}$	3.0300
$\mathrm{O} 2 \cdots \mathrm{H} 1^{\text {vii }}$	1.799 (16)	$\mathrm{H} 6 \cdots \mathrm{O} 4^{\text {ii }}$	2.31 (2)
$\mathrm{O} 3 \cdots \mathrm{H} 7^{\text {vii }}$	2.018 (18)	H6 \cdots O3 ${ }^{\text {ii }}$	2.39 (2)
$\mathrm{O} 3 \cdots \mathrm{H} 9^{\text {iv }}$	1.765 (17)	$\mathrm{H} 6 \cdots \mathrm{P} 1^{\text {ii }}$	2.87 (2)
O3 $\cdots{ }^{\text {H }} 6^{\text {v }}$	2.39 (2)	H7 \cdots O3 ${ }^{\text {x }}$	2.018 (18)
$\mathrm{O} 4 \cdots \mathrm{H} 6^{\text {v }}$	2.31 (2)	H7 \cdots H1	2.43 (3)
$\mathrm{O} 4 \cdots \mathrm{H} 2^{\text {viii }}$	2.7400	H7 \cdots P1 ${ }^{\text {x }}$	3.02 (2)
$\mathrm{N} 1 \cdots \mathrm{O} 2^{\mathrm{x}}$	2.6693 (18)	$\mathrm{H} 8 \cdots \mathrm{P} 1^{\text {iv }}$	2.890 (16)
$\mathrm{N} 1 \cdots \mathrm{~S} 1$	2.5519 (16)	$\mathrm{H} 8 \cdots \mathrm{O} 2{ }^{\text {iv }}$	1.795 (19)
$\mathrm{N} 2 \cdots \mathrm{O} 3{ }^{\text {ii }}$	3.138 (2)	$\mathrm{H} 9 \cdots \mathrm{P} 1^{\text {vi }}$	2.896 (17)
$\mathrm{N} 2 \cdots \mathrm{O} 4^{\mathrm{ii}}$	3.076 (2)	$\mathrm{H} 9 \cdots \mathrm{O} 3^{\text {vi }}$	1.765 (17)
$\mathrm{N} 2 \cdots \mathrm{O} 3^{\mathrm{x}}$	2.875 (2)		
$\mathrm{C} 1-\mathrm{S} 1-\mathrm{C} 7$	90.04 (9)	C1-C2-C3	118.06 (19)
$\mathrm{O} 2-\mathrm{P} 1-\mathrm{O} 4$	109.85 (7)	C2-C3-C4	121.6 (2)
$\mathrm{O} 3-\mathrm{P} 1-\mathrm{O} 4$	107.32 (8)	C3-C4-C5	120.5 (2)

$\mathrm{O} 1-\mathrm{P} 1-\mathrm{O} 2$	$107.83(8)$
$\mathrm{O} 1-\mathrm{P} 1-\mathrm{O} 3$	$110.41(8)$
$\mathrm{O} 1-\mathrm{P} 1-\mathrm{O} 4$	$105.70(8)$
$\mathrm{O} 2-\mathrm{P} 1-\mathrm{O} 3$	$115.33(7)$
$\mathrm{P} 1-\mathrm{O} 1-\mathrm{H} 8$	$112.5(18)$
$\mathrm{P} 1-\mathrm{O} 4-\mathrm{H} 9$	$118(2)$
$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 7$	$114.70(15)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{H} 1$	$123.5(16)$
$\mathrm{C} 6-\mathrm{N} 1-\mathrm{H} 1$	$121.7(16)$
$\mathrm{H} 6-\mathrm{N} 2-\mathrm{H} 7$	$120(2)$
$\mathrm{C} 7-\mathrm{N} 2-\mathrm{H} 6$	$119.8(14)$
$\mathrm{C} 7-\mathrm{N} 2-\mathrm{H} 7$	$119.0(17)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6$	$120.50(18)$
$\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 6$	$110.54(13)$
$\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2$	$128.96(15)$
$\mathrm{C} 7-\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2$	$178.1(2)$
$\mathrm{C} 7-\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 6$	$-1.63(15)$
$\mathrm{C} 1-\mathrm{S} 1-\mathrm{C} 7-\mathrm{N} 2$	$-178.14(18)$
$\mathrm{C} 1-\mathrm{S} 1-\mathrm{C} 7-\mathrm{N} 1$	$1.89(15)$
$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 7-\mathrm{N} 2$	$178.35(18)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 5$	$-179.97(19)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 1$	$0.4(2)$
$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 7-\mathrm{S} 1$	$-1.7(2)$
$\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{N} 1$	$1.0(2)$
$\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$-178.61(15)$
S 5	

$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$118.07(19)$
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$121.24(17)$
$\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 1$	$112.22(15)$
$\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 5$	$126.55(17)$
$\mathrm{N} 1-\mathrm{C} 7-\mathrm{N} 2$	$123.59(18)$
$\mathrm{S} 1-\mathrm{C} 7-\mathrm{N} 1$	$112.46(13)$
$\mathrm{S} 1-\mathrm{C} 7-\mathrm{N} 2$	$123.95(15)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	121.00
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	121.00
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	119.00
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	119.00
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4$	120.00
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4$	120.00
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5$	121.00
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5$	121.00
$\mathrm{~S} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$179.72(17)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-0.5(3)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{N} 1$	$-178.75(18)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$1.6(3)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-0.5(4)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$0.6(4)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$0.5(3)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$-1.5(3)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{N} 1$	$178.86(19)$

Symmetry codes: (i) $x, y, z+1$; (ii) $-x+1, y-1 / 2,-z+3 / 2$; (iii) $x,-y+1 / 2, z+1 / 2$; (iv) $x,-y+3 / 2, z+1 / 2$; (v) $-x+1, y+1 / 2,-z+3 / 2$; (vi) x, $-y+3 / 2, z-1 / 2$; (vii) $x, y+1, z-1$; (viii) $x, y, z-1$; (ix) $-x, y+1 / 2,-z+1 / 2$; (x) $x, y-1, z+1$; (xi) $x,-y+1 / 2, z-1 / 2$; (xii) $-x,-y+1,-z+1$; (xiii) $-x, y+1 / 2,-z+3 / 2$; (xiv) $-x, y-1 / 2,-z+3 / 2$; (xv) $-x, y-1 / 2,-z+1 / 2$.

Hydrogen-bond geometry ($\left.\AA,{ }^{\circ}\right)$

$D — \mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots \mathrm{A}$	$D^{\cdots} A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 2^{\mathrm{x}}$	0.873 (16)	1.800 (16)	2.6693 (18)	174 (3)
$\mathrm{N} 2-\mathrm{H} 6 \cdots \mathrm{O} 3{ }^{\text {ii }}$	0.86 (2)	2.39 (2)	3.138 (2)	147 (2)
$\mathrm{N} 2-\mathrm{H} 6 \cdots \mathrm{O} 4^{\text {ii }}$	0.86 (2)	2.31 (2)	3.076 (2)	149.3 (19)
$\mathrm{N} 2-\mathrm{H} 7 \cdots \mathrm{O} 3^{\mathrm{x}}$	0.862 (18)	2.018 (18)	2.875 (2)	172 (2)
$\mathrm{O} 1-\mathrm{H} 8 \cdots \mathrm{O} 2^{\text {iv }}$	0.809 (19)	1.795 (19)	2.6017 (18)	175 (3)
$\mathrm{O} 4-\mathrm{H} 9 \cdots 3^{\text {vi }}$	0.801 (17)	1.765 (17)	2.5654 (18)	178 (3)

Symmetry codes: (x) $x, y-1, z+1$; (ii) $-x+1, y-1 / 2,-z+3 / 2$; (iv) $x,-y+3 / 2, z+1 / 2$; (vi) $x,-y+3 / 2, z-1 / 2$.

Fig. 1

Fig. 2

